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LETTER TO THE EDITOR 

On a mechanical matching condition related to the detection 
limit for gravitational radiation 

D G MAEDER 
Department of Nuclear and Particle Physics, University of Geneva, 
CH-1211 Switzerland 

MS received 13 September 1972 

Abstract. Detector characteristics are reduced to four parameters: Tl = period 
Maya = total mass, p = relative transducer mass, r = mismatch ratio. Calculation 
of the response to a standardized gravity pulse is outlined. Mechanical and electrical 
signal-to-noise ratios are defined as theoretical limits for zero amplifier noise ( p a  = 0) 
and zero detector temperature ( 0  = 0), respectively. Maximum overall sensibility 
requires resolving time adjustments depending on r and p, and proportional to 
Tl(p./B)1’2. For any suitable p value, matched systems ( r  = 0) approach the maximum 
sensibility which is shown to vary according to TlM,,.1’2(p,B) - l I 4 ,  contrary to 
current views based on simplified arguments. 

1. Introduction 

Current discussion of Weber-type antennae (Weber 1970, Aplin 1972) concentrates 
on a few particular configurations which are usually treated in terms of a simplified 
harmonic oscillator model (Gibbons and Hawking 1971, Douglass and Tyson 1971, 
Drever 1971, Proc. 6th Int. Conf. on Gravitation and Relativity, Copenhagen, un- 
published). Recently, Rasband et al (1972) attempted a quantitative comparison of 
relative sensitivities between the two extreme geometries of a homogeneous cylinder 
and a dumbbell. As they did not evaluate the mechanical Q factors nor the electrical 
signal-to-noise limitations, the question of the absolute sensitivity of differently 
designed antennae remains unsettled. Furthermore, there is a need for a comprehensive 
theory covering all intermediate geometries, in view of the rapidly expanding use 
of divided-bar systems (see also Maeder 1971a, Bramanti and Maischberger 1972. 
to be published). 

The present calculations apply to systems having a central piezoelectric transducer 
with an arbitrary cross section ratio, 

A mismatch is specified in terms of the reflection coefficient r ;  Y ,  p, U denote Young’s 
moduli, densities, and sound velocities (quantities with and without the subscript p 
refer to the transducer and the metal parts, respectively). 

2. Basic independent parameters 

These are: TI = fundamental-mode period, M,,, = total system mass (e M+M,), 
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p = relative transducer mass (= M p / M ) ,  r = force amplitude reflection coefficient 
(from Mp into Mp). These four parameters determine all detector dimensions, for 
example the transducer length and the total metal parts length : 

where 4 and I,4, the respective phaseshifts, are solutions of 

+ { l + p - r ( 1 - p ) }  l-rcos+ - tan - 
2P( 1 + r sin + (3) 

I,4 = +(I - r ) /p(1  + r > .  (4) 

The respective cross sections are calculated from S = M,,,/pL(I +p) and from 
equation (1). Keeping TI ,  Msys, and p constant, the geometrical aspects vary as a 
function of r as depicted in figure 1 for a typical piezoxydet-aluminium combination. 
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Figure 1. Divided-bar systems having the same fundamental period (TI), total mass 
(M+ Mp), and transducer mass (Mp = pM) .  Geometrical aspects are drawn to scale 
for the material combination aluminium-PXE4, with p = 0-05. Case B is mechani- 
cally matched (r = 0), whereas A, D, F correspond to r = -03, 4-05, and +0.8 
respectively. Rdection and transmission coefficients indicated at the bottom refer 
to force amplitude. 

Table 1 displays certain material-independent factors, including the two expressions 

Ep = p(*)'( 1 +T) sin + 
1 - r  

E = (cosa &$){ 1 -(sin $/#)))/sina i$ (6 )  
which are proportional to the elastic energies contained in the transducer and in the 
metal parts. 

3. Sensitivity standardization 

Gravity-wave excitations will be referred to a hypothetica1 single pulse of short 
t PXE4, a lead-zirconium titanate manufactured by Philips, has elastic properties such that 
uP/u 2: 0-6, pp/p 1: 2.8, Qp/Q N 
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duration with a non-vanishing integral of the Riemann tensor 1010 component 
+ dt 

J = c2 1 Rlolo(t)dt 
- dt 

(7) 

(expected magnitude - 10-l2s-l). The response to a real burst having a zero time 
integral is related to  the J pulse response essentially by a function of (T/T,)  where T is 
the average interval between successive Jpulses of opposite sign (Gibbons and Hawking 
1971, Maeder 1971a); therefore, TI  m ~ s t  be kept constant in the sensitivity compari- 
sons. 

4. Mechanical response 

i'his is the stress amplitude oJ developed at the centre of the transducer region during 
the first half-period following a J pulse, assuming that the detector was initially at 
rest (as if kT = 0). A perfectly matched system (Y = 0) is similar to a homogeneous 
cylinder for which the time-domain reponse was discussed by Maeder (1971a); at  the 
centre, the stress waveform is triangular with RMS and peak amplitudes (converted 
to  the transducer material) given by 

where the argument (0) refers to  the Y value. The triangular waveform results from a 
ramp function which is successively reflected at the cylinder end faces. For r # 0, 
multiple reflections were calculated on a computer to  obtain detailed waveforms; 
condensed results, eJ(r )  and oJRMS(r), are reported in table 1 using expression (8) 
as a convenient unit. 

5. Thermal response 

Thermal response of a perfectly matched system : 

o k T ~ ~ ~ ( ~ )  = (28 ~ ~ ~ ~ ~ ~ ~ , ~ ) 1 ~ 2  

where 8 kT. For I' # 0, (9) has to be multiplied by 

o k ~ ~ ~ ~ ( r ) / o k ~ ~ ~ ~ ( o )  =[{( 1 + p)/(E, + E)}1'2 

6. Mechanical signal-to-noise ratio 

Mechanical signal-to-noise ratio (MSNR) is based on the theoretical limit of filter gain 
(assuming zero amplifier noise) which may be increased to (2Q/n)li2 using a half-period 
resolving time (Maeder 1971b). The mechanical Qsvs of the detectors considered in this 
letter depends essentially on Q, according to 

(1 1) 
provided that the bonding material (subscript b, thickness Lb) has a negligible effect; 

Q s y d Q p  2: (Ep +E)/{& + ( Q p / Q W l  
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this requires Lb << LPQb/Qp, The final expression includes a factor n-lI2 (see equation 
(17)) to allow for a compromise if required by actual amplifier noise: 

(12) MSNR = (2 Qsys/m)li2 oJRMS(r)/ okTRMS( r). 

Typical results (Qp/Q = table 1) are given in units of 
112 

(13) 
expression (8) = * ~ J T ~ ( - )  MsysQp . 

3rnB 

7. Electric signal-to-noise ratio 

Electric signal-to-noise ratio (ESNR) denotes a sensibility limit that could theoretically 
be attained with a perfectly noise-free detector (0 = 0). The electronic detection limit, 
known in terms of energy (Maeder 1972), is to be compared with the time-averaged 
total elastic energy in the transducer, given by 

1 
W J ( r )  = - ( ‘JRMS(r>)2{1 +(sin $ / $ ) ) M p / f p *  (14) 

2 YP 
With respect to amplitudes, ESNR cc. WJli2  so that 

ESNR = (oJRMS(r)/oJRMs(0))[p{l +(sin $/$)}/(l +p)]1’2K, (15) 

with a proportionality constant K, set by electrical matching considerations; it can 
be shown that 

K, 2: $K v J Tl (rrn M ,  s/3pa)1’2 

n = 1, 2, 3, . . , = resolving time in units of iTl 

(16) 

(1 7) 

where K = piezoelectric coupling coefficient ( N 0.7), pa  = amplifier noise energy, and 

depending on the choice of filter parameters (Maeder 1971b). 

8. Optimum geometry 

To maximize the overall signal-to-noise ratio (SNR), n is chosen equal to the integer 
nearest to 

MSNR table value (QPp,/6)ll2 
ESNR table value 77K 

X (18) n* = 

or 1, whichever is greater. n = n* would provide MSNR ESNR, resulting in a 
theoretical limit, 

= (MSNR;ESNR 1. (19) 
MSNR X ESNR 

SNR* = Max(( 
M S N R ~  + E S N R ~ ) ~ / ~  

Numerical values (table 1) given in units of 

K* = ( KmK,)1’2 = ~ v J T l ( ~ ~ , y , / 3 ) 1 ’ 2 ( Q p / ~ a ~ ) 1 i ~  (20) 
go through flat maxima, for example at  rapt = - 0.2 for p = 0.05; however, r = 0 
always yields at  least 95% of the maximum SNR* for a given p. 
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9. Conclusions 

Any design with mechanically matched transducers is satisfactory, although there is no 
advantage in using transducer masses greater than 1% of M,,,. Tabulated n* values 
indicate an optimum resolving time of about five periods, using present day FET 
amplifiers with detectors at  room temperature. If better amplifiers become available, 
time resolution can be improved as well as the SNR*. If detectors are cooled without 
improving the amplifiers, time resolution must be compromised in order to achieve 
a sensibility improvement. Neglecting the MsNR-EsNR-optimization, previous authors 
generally arrived at  sensibility formulae proportional to K, (equation (1 3)), or 
e-1/2. The new result (equation (20)) shows a temperature dependence proportional to 

with the understanding that any variations of amplifier and transducer characteri- 
stics should be evaluated separately. 
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